If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+16x+6=0
a = -16; b = 16; c = +6;
Δ = b2-4ac
Δ = 162-4·(-16)·6
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{10}}{2*-16}=\frac{-16-8\sqrt{10}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{10}}{2*-16}=\frac{-16+8\sqrt{10}}{-32} $
| 2^x=0.67 | | 1.9x^2+20x+6=0 | | (2s-1)^2=255 | | x^2-74*x+576=0 | | 25x+15=24x+12 | | 20x-2x=0 | | 20x-(x^2)=0 | | 2.5x-0.5(0.5x)=4.5 | | 5x-30=40 | | 6200=x+x*1,02^2+x*1,02^3 | | 338+x/7=56 | | 30-x=10x= | | 2x+5=9x= | | n/20(20-n)=3 | | x2+5x+9/4=0 | | (2x−7)2=9 | | 2r-15=16 | | 13=1/2(8x+2) | | 7x+17=3(x-1) | | 20-(x/15)=x/60 | | x+(x*0.09)=4050 | | (8x+2)=13 | | 180=(1,8xC)+32 | | x^2+2x−5=0 | | (x/30)+(x/60)=0 | | 3x-+2x^2=7 | | 3z(z-4)=5z-11 | | 39+13x=-51 | | 35+x=2x | | 20-(x/30)-(x/30)=0 | | 4k-9=2 | | 2a+3a+2=5a+2 |